Attention Reverses the Effect of Prediction in Silencing Sensory Signals
نویسندگان
چکیده
Predictive coding models suggest that predicted sensory signals are attenuated (silencing of prediction error). These models, though influential, are challenged by the fact that prediction sometimes seems to enhance rather than reduce sensory signals, as in the case of attentional cueing experiments. One possible explanation is that in these experiments, prediction (i.e., stimulus probability) is confounded with attention (i.e., task relevance), which is known to boost rather than reduce sensory signal. However, recent theoretical work on predictive coding inspires an alternative hypothesis and suggests that attention and prediction operate synergistically to improve the precision of perceptual inference. This model posits that attention leads to heightened weighting of sensory evidence, thereby reversing the sensory silencing by prediction. Here, we factorially manipulated attention and prediction in a functional magnetic resonance imaging study and distinguished between these 2 hypotheses. Our results support a predictive coding model wherein attention reverses the sensory attenuation of predicted signals.
منابع مشابه
Extraction of Sensory part of Ulnar Nerve Signal Using Blind Source Separation Method
A recorded nerve signal via an electrode is composed of many evokes or action potentials, (originated from individual axons) which may be considered as different initial sources. Recovering these primitive sources in its turn may lead us to the anatomic originations of a nerve signal which will give us outstanding foresights in neural rehabilitations. Accordingly, clinical interests may be r...
متن کاملThe Effect of Sensory Integration on the Attention and Motor Skills of Students With Down Syndrome
Objectives: Sensory integration training plays a crucial role on the attention span and motor skills of students with Down syndrome. The present research aimed to investigate the effect of sensory integration training on the attention span and motor skills of students with Down syndrome. Methods: This was a quasi-experimental research with a pretest, posttest design and control group. Partici...
متن کاملT-type Ca2+ channels in thalamic sensory gating and affective Disorders
Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...
متن کاملT-type Ca2+ channels in thalamic sensory gating and affective Disorders
Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...
متن کاملPrediction of Above-elbow Motions in Amputees, based on Electromyographic(EMG) Signals, Using Nonlinear Autoregressive Exogenous (NARX) Model
Introduction In order to improve the quality of life of amputees, biomechatronic researchers and biomedical engineers have been trying to use a combination of various techniques to provide suitable rehabilitation systems. Diverse biomedical signals, acquired from a specialized organ or cell system, e.g., the nervous system, are the driving force for the whole system. Electromyography(EMG), as a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2011